
QCM Diagnostic

Question 1. Choisir la bonne réponse.

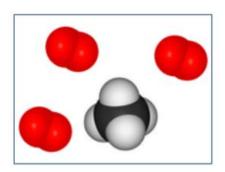
Dans l'expérience précédente,

- a. Le vinaigre est un produit de la réaction.
- **b.** Le vinaigre est un réactif de la réaction.
- c. Le bicarbonate est réactif de la réaction.
- d. Le bicarbonate est produit de la réaction.
- e. Le gaz qui gonfle le ballon est un produit de la réaction.
- f. Le gaz qui gonfle le ballon est réactif de la réaction.

Question 2. Voici l'équation traduisant la combustion du méthane dans le dioxygène :

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

1) Compléter le tableau ci-dessous :


	Réactifs de la transformation		Produits de la transformation	
Formule chimique				
Nom				

- 2) Choisir la bonne réponse. Au cours de cette transformation chimique,
- **a.** Une mole de méthane (CH_4) réagit avec deux moles de dioxygène (O_2) pour former une mole de dioxyde de carbone (CO_2) et deux moles d'eau (H_2O) .
- **b.** Une mole de dioxyde de carbone (CO_2) réagit avec deux moles d'eau (H_2O) pour former une mole de méthane (CH_4) réagit avec deux moles de dioxygène (O_2)
- **c.** Une mole de méthane (CH_4) réagit avec une mole de dioxygène (O_2) pour former une mole de dioxyde de carbone (CO_2) et une mole d'eau (H_2O) .

 Vérifier si l'équation de la réaction est ajustée 	e. Justifier la réponse.

4) On réalise la combustion du méthane dans une boite fermée (image à gauche, ci-dessous).

Compléter le tableau en indiquant le nombre d'entités présentes dans la boite à la fin de la combustion.

Entité		Nombre d'entité(s) à la fin de la transformation		
Méthane				
Dioxygène				
Eau				
Dioxyde de carbone				

Évaluation sur la transformation chimique

❖ Exercice 1 : ajuster des éguations de réaction

Ajuster, avec des nombres stœchiométriques corrects, les équations des réactions chimiques suivantes :

a) ...
$$CH_4(g) + ... O_2(g) \rightarrow ... CO_2(g) + ... H_2O(g)$$

b) ... Fe (s) + ... H⁺ (aq)
$$\rightarrow$$
 ... Fe²⁺ (aq) + ... H₂ (g)

c) ...
$$CaCO_3$$
 (s) + ... H^+ (aq) \rightarrow ... CO_2 (g) + ... H_2O (g) + ... Ca^{2+} (aq)

d) ... MgO (s) + ... Si
$$(\ell)$$
 \rightarrow ... SiO₂ (ℓ) + ... Mg (s)

❖ Exercice 2: étude d'une transformation chimique

On décrit les états initial et final au cours d'une transformation chimique :

État initial	État final
Température : 20 °C	Température : 24 °C
 Ions cuivre : n(Cu²+) = 2 mol Zinc métal : n(Zn)= 3 mol Ions sulfate : n(SO₄²-) =2 mol Eau : H₂O 	 Cuivre métal : n(Cu) = 2 mol lons zinc : n(Zn²⁺) = 2 mol Zinc métal : n(Zn)= 1 mol lons sulfate : n(SO₄²⁻) = 2 mol Eau : H₂O

1) Identifier les deux produits formés.

2) Identifier les réactifs.

3) a) Quel réactif est totalement consommé à la fin de la transformation ?

b) Comment appelle-t-on ce réactif?

4) Identifier les deux espèces chimiques spectatrices.

5) Écrire l'équation ajustée correspondant à cette transformation chimique.

6) a) Le système chimique libère-t-il ou reçoit-il de l'énergie ? Justifier.

b) En déduire s'il s'agit d'une transformation endothermique ou exothermique.

Exercice 3 : identification du réactif limitant

L'aluminium Al (s) réagit avec le dichlore Cl₂ (g) pour donner du chlorure d'aluminium AlCl₃ (s) selon l'équation de réaction chimique :

$$2 \text{ Al (s)} + 3 \text{ Cl}_2 \text{ (g)} \rightarrow 2 \text{ AlCl}_3 \text{ (s)}$$

On réalise la transformation à partir de 0,040 mol de poudre d'aluminium et de 0,039 mol de dichlore.

1) Déterminer le réactif limitant. Justifier.

2) Calculer la quantité de matière nécessaire de dichlore Cl₂ (g) pour que le mélange soit stœchiométrique si on utilise 0,040 mol d'aluminium Al (s).

Capacités exigibles		Remarque(s)
Ajuster l'équation d'une réaction	◎ ⊜ ⊗	
Modéliser, à partir de données expérimentales, une transformation par une réaction, établir l'équation de réaction associée et l'ajuster	◎	
Identifier le réactif limitant à partir des quantités de matière des réactifs et de l'équation de réaction.	◎ ⊕ ⊗	
Déterminer le caractère endothermique ou exothermique d'une transformation chimique.	◎ ⊜ ⊗	
Utiliser la proportionnalité.	© © Ø	